Affiliation:
1. University of Massachusetts Amherst
Abstract
Abstract
This paper presents a normalized standard error-based statistical data binning method, termed “bin size index” (BSI), which yields an optimized, objective bin size for constructing a rational histogram to facilitate subsequent deconvolution of multimodal datasets from materials characterization and hence the determination of the underlying probability density functions. Totally 10 datasets, including 4 normally-distributed synthetic ones, 3 normally-distributed ones on the elasticity of rocks obtained by statistical nanoindentation, and 3 lognormally-distributed ones on the particle size distributions of flocculated clay suspensions, were used to illustrate the BSI’s concepts and algorithms. While results from the synthetic datasets prove the method’s accuracy and effectiveness, analyses of other real datasets from materials characterization and measurement further demonstrate its rationale, performance, and applicability to practical problems. The BSI method also enables determination of the number of modes via the comparative evaluation of the errors returned from different trial bin sizes. The accuracy and performance of the BSI method are further compared with other widely used binning methods, and the former yields the highest BSI and smallest normalized standard error. The advantages and disadvantages of the new method are also discussed.
Publisher
Research Square Platform LLC