Affiliation:
1. Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Sweden
2. Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
Abstract
Spermatozoa are the most morphologically diverse cell type, leading to the widespread assumption that they evolve rapidly. However, there is no direct evidence that sperm evolve faster than other male traits. Such a test requires comparing male traits that operate in the same selective environment, ideally produced from the same tissue, yet vary in function. Here, we examine rates of phenotypic evolution in sperm morphology using two insect groups where males produce fertile and non-fertile sperm types (
Drosophila
species from the
obscura
group and a subset of Lepidoptera species), where these constraints are solved. Moreover, in
Drosophila
we test the relationship between rates of sperm evolution and the link with the putative selective pressures of fertilization function and postcopulatory sexual selection exerted by female reproductive organs. We find repeated evolutionary patterns across these insect groups—lengths of fertile sperm evolve faster than non-fertile sperm. In
Drosophila
, fertile sperm length evolved faster than body size, but at the same rate as female reproductive organ length. We also compare rates of evolution of different sperm components, showing that head length evolves faster in fertile sperm while flagellum length evolves faster in non-fertile sperm. Our study provides direct evidence that sperm length evolves more rapidly in fertile sperm, probably because of their functional role in securing male fertility and in response to selection imposed by female reproductive organs.
Funder
Leverhulme Trust
Knut och Alice Wallenbergs Stiftelse
Vetenskapsrådet
Division of Environmental Biology
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献