Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress

Author:

Mi Chunrong12ORCID,Ma Liang3,Wang Yang4,Wu Danyang1,Du Weiguo1ORCID,Sun Baojun1ORCID

Affiliation:

1. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China

2. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

3. Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA

4. School of Biological Sciences, Hebei Normal University, Shijiazhuang, People's Republic of China

Abstract

Climate warming has imposed profound impacts on species globally. Understanding the vulnerabilities of species from different latitudinal regions to warming climates is critical for biological conservation. Using five species of Takydromus lizards as a study system, we quantified physiological and life-history responses and geography range change across latitudes under climate warming. Using integrated biophysical models and hybrid species distribution models, we found: (i) thermal safety margin is larger at high latitudes and is predicted to decrease under climate warming for lizards at all latitudes; (ii) climate warming will speed up embryonic development and increase annual activity time of adult lizards, but will exacerbate water loss of adults across all latitudes; and (iii) species across latitudes are predicted to experience habitat contraction under climate warming due to different limitations—tropical and subtropical species are vulnerable due to increased extremely high temperatures, whereas temperate species are vulnerable due to both extremely high temperatures and increased water loss. This study provides a comprehensive understanding of the vulnerability of species from different latitudinal regions to climate warming in ectotherms, and also highlights the importance of integrating environmental factors, behaviour, physiology and life-history responses in predicting the risk of species to climate warming.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

China Postdoctoral Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3