Affiliation:
1. Physiology Division, Department of Pathophysiology and Transplants, University of Milan, Via Mangiagalli 32, 20133 Milan, Italy
Abstract
Joint friction has never previously been considered in the computation of mechanical and metabolic energy balance of human and animal (loco)motion, which heretofore included just muscle work to move the body centre of mass (external work) and body segments with respect to it. This happened mainly because, having been previously measured
ex vivo
, friction was considered to be almost negligible. Present evidences of
in vivo
damping of limb oscillations, motion captured and processed by a suited mathematical model, show that: (a) the time course is exponential, suggesting a viscous friction operated by the all biological tissues involved; (b) during the swing phase, upper limbs report a friction close to one-sixth of the lower limbs; (c) when lower limbs are loaded, in an upside-down body posture allowing to investigate the hip joint subjected to compressive forces as during the stance phase, friction is much higher and load dependent; and (d) the friction of the four limbs during locomotion leads to an additional internal work that is a remarkable fraction of the mechanical external work. These unprecedented results redefine the partitioning of the energy balance of locomotion, the internal work components, muscle and transmission efficiency, and potentially readjust the mechanical paradigm of the different gaits.
Funder
'Tariffario Laboratorio Analisi’ Research Fund, ‘Faculty of Medicine’
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献