Horizontal running inside circular walls of Moon settlements: a comprehensive countermeasure for low-gravity deconditioning?

Author:

Minetti Alberto E.1ORCID,Luciano Francesco1,Natalucci Valentina1,Pavei Gaspare1ORCID

Affiliation:

1. Locomotion Physiomechanics Laboratory, Department of Pathophysiology and Transplantation, University of Milan , Milan, Italy

Abstract

Long-lasting exposure to low gravity, such as in lunar settlements planned by the ongoing Artemis Program, elicits muscle hypotrophy, bone demineralization, cardio-respiratory and neuro-control deconditioning, against which optimal countermeasures are still to be designed. Rather than training selected muscle groups only, ‘whole-body’ activities such as locomotion seem better candidates, but at Moon gravity both ‘pendular’ walking and bouncing gaits like running exhibit abnormal dynamics at faster speeds. We theoretically and experimentally show that much greater self-generated artificial gravities can be experienced on the Moon by running horizontally inside a static 4.7 m radius cylinder (motorcyclists’ ‘Wall of Death’ of amusement parks) at speeds preventing downward skidding. To emulate lunar gravity, 83% of body weight was unloaded by pre-tensed (36 m) bungee jumping bands. Participants unprecedentedly maintained horizontal fast running (5.4–6.5 m s −1 ) for a few circular laps, with intense metabolism (estimated as 54–74 mlO 2  kg −1  min −1 ) and peak forces during foot contact, inferred by motion analysis, of 2–3 Earth body weight (corresponding to terrestrial running at 3–4 m s −1 ), high enough to prevent bone calcium resorption. A training regime of a few laps a day promises to be a viable countermeasure for astronauts to quickly combat whole-body deconditioning, for further missions and home return.

Funder

Tariffario Laboratorio Analisi’ Research Fund, ‘Faculty of Medicine’ of the University of Milan

Publisher

The Royal Society

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3