Practical advice on variable selection and reporting using Akaike information criterion

Author:

Sutherland Chris1ORCID,Hare Darragh23ORCID,Johnson Paul J.2ORCID,Linden Daniel W.4ORCID,Montgomery Robert A.5ORCID,Droge Egil26ORCID

Affiliation:

1. Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK

2. Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, UK

3. Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA

4. Northeast Fisheries Science Center, NOAA National Marine Fisheries Service, Woods Hole, MA, USA

5. Department of Biology, University of Oxford, Oxford, UK

6. Zambian Carnivore Programme, Mfuwe, Zambia

Abstract

The various debates around model selection paradigms are important, but in lieu of a consensus, there is a demonstrable need for a deeper appreciation of existing approaches, at least among the end-users of statistics and model selection tools. In the ecological literature, the Akaike information criterion (AIC) dominates model selection practices, and while it is a relatively straightforward concept, there exists what we perceive to be some common misunderstandings around its application. Two specific questions arise with surprising regularity among colleagues and students when interpreting and reporting AIC model tables. The first is related to the issue of ‘pretending’ variables, and specifically a muddled understanding of what this means. The second is related to p -values and what constitutes statistical support when using AIC. There exists a wealth of technical literature describing AIC and the relationship between p -values and AIC differences. Here, we complement this technical treatment and use simulation to develop some intuition around these important concepts. In doing so we aim to promote better statistical practices when it comes to using, interpreting and reporting models selected when using AIC.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3