Cryptic diversity impacts model selection and macroevolutionary inferences in diversification analyses

Author:

Utami C. Y.12,Sholihah A.13,Condamine F. L.1,Thébaud C.2,Hubert N.1ORCID

Affiliation:

1. UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

2. UMR 5174 EDB (CNRS, Université Paul Sabatier, IRD), 31062 Toulouse Cedex 9, France

3. School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

Abstract

Species persist in landscapes through ecological dynamics but proliferate at wider spatial scales through evolutionary mechanisms. Disentangling the contribution of each dynamic is challenging, but the increasing use of dated molecular phylogenies opened new perspectives. First, the increasing use of DNA sequences in biodiversity inventory shed light on a substantial amount of cryptic diversity in species-rich ecosystems. Second, explicit diversification models accounting for various eco-evolutionary models are now available. Integrating both advances, we explored diversification trajectories among 10 lineages of freshwater fishes in Sundaland, for which time-calibrated and taxonomically rich phylogenies are available. By fitting diversification models to dated phylogenies and incorporating DNA-based species delimitation methods, the impact of cryptic diversity on diversification model selection and related inferences is explored. Eight clades display constant speciation rate model as the most likely if cryptic diversity is accounted, but nine display a signature of diversification slowdowns when cryptic diversity is ignored. Cryptic diversification occurs during the last 5 Myr for most groups, and palaeoecological models received little support. Most cryptic lineages display restricted range distribution, supporting geographical isolation across homogeneous landscapes as the main driver of diversification. These patterns question the persistence of cryptic diversity and its role during species proliferation.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3