Multilevel selection in the evolution of sexual dimorphism in phenotypic plasticity

Author:

Zadorin Anton S.1,Rivoire Olivier23ORCID

Affiliation:

1. Laboratory of Biophysics and Evolution, Chemistry Biology Innovation, ESPCI, Université PSL, 75005 Paris, France

2. Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France

3. Gulliver UMR CNRS 7083, ESPCI, Université PSL, 75005 Paris, France

Abstract

Phenotypes are partly shaped by the environment, which can impact both short-term adaptation and long-term evolution. In dioecious species, the two sexes may exhibit different degrees of phenotypic plasticity and theoretical models indicate that such differences may confer an adaptive advantage when the population is subject to directional selection, either because of a systematically varying environment or a load of deleterious mutations. The effect stems from the fundamental asymmetry between the two sexes: female fertility is more limited than male fertility. Whether this asymmetry is sufficient for sexual dimorphism in phenotypic plasticity to evolve is, however, not obvious. Here, we show that even in conditions where it provides an adaptive advantage, dimorphic phenotypic plasticity may be evolutionarily unstable due to sexual selection. This is the case, in particular, for panmictic populations where mating partnerships are formed at random. However, we show that the effects of sexual selection can be counteracted when mating occurs within groups of related individuals. Under this condition, sexual dimorphism in phenotypic plasticity can not only evolve but offset the twofold cost of males. We demonstrate these points with a simple mathematical model through a combination of analytical and numerical results.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3