How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux

Author:

Ghedini Giulia1ORCID,Malerba Martino E.1ORCID,Marshall Dustin J.1ORCID

Affiliation:

1. Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia

Abstract

Size and metabolism are highly correlated, so that community energy flux might be predicted from size distributions alone. However, the accuracy of predictions based on interspecific energy–size relationships relative to approaches not based on size distributions is unknown. We compare six approaches to predict energy flux in phytoplankton communities across succession: assuming a constant energy use among species (per cell or unit biomass), using energy–size interspecific scaling relationships and species-specific rates (both with or without accounting for density effects). Except for the per cell approach, all others explained some variation in energy flux but their accuracy varied considerably. Surprisingly, the best approach overall was based on mean biomass-specific rates, followed by the most complex (species-specific rates with density). We show that biomass-specific rates alone predict community energy flux because the allometric scaling of energy use with size measured for species in isolation does not reflect the isometric scaling of these species in communities. We also find energy equivalence throughout succession, even when communities are not at carrying capacity. Finally, we discuss that species assembly can alter energy–size relationships, and that metabolic suppression in response to density might drive the allometry of community energy flux as biomass accumulates.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3