Earthquake disturbance shifts metabolic energy use and partitioning in a monodominant forest

Author:

Xu Meng1ORCID,Allen Robert B.2,Newman Erica A.3

Affiliation:

1. Department of Mathematics Pace University New York New York USA

2. Independent Researcher Lincoln New Zealand

3. Department of Integrative Biology University of Texas at Austin Austin Texas USA

Abstract

AbstractAimBoth macroecology and disturbance ecology have long been used to characterize population‐ and community‐level patterns across scales, but the integration of both approaches in characterizing disturbed ecosystems is rare. Here, we use the maximum entropy theory of ecology (METE) to model the individual size distribution (ISD) of trees in pre‐ and post‐disturbance tree populations and estimate the corresponding metabolic scaling exponents.LocationNew Zealand.Time Period1987–1999.Major Taxa StudiedMountain beech (Fuscospora cliffortioidesNothofagaceae).MethodsMETE uses information entropy and empirical macro‐state variables to constrain predictions of ecological distributions related to biodiversity. METE has successfully predicted a range of biodiversity metrics in static or relatively undisturbed conditions. However, METE can fail to accurately model ecological patterns in disturbed ecosystems. We extend existing theoretical predictions to a highly disturbed ecosystem by treating the metabolic scaling exponent and Lagrange multipliers as free parameters in METE.ResultsWe showed that the fully parameterized METE (FP‐METE) model reasonably predicted the ISD of mountain beech populations in a monodominant forest after a strong earthquake, which restructured the forest. Furthermore, the FP‐METE model revealed that decreasing metabolic scaling exponent drove the substantial decline of total metabolic rate energy and the redistribution of energy towards smaller trees after the earthquake. Increased number of small trees was not sufficient to capture the full impact of disturbance on forest energy use.Main ConclusionsOur FP‐METE model applies an informatics approach to estimate the metabolic scaling relationship. We find that instead of maintaining a fixed value, the metabolic scaling exponent is variable among populations, and declines significantly after an earthquake disturbance. This leads to major shifts in the total population metabolic energy and energy distribution. With this approach, we now have the opportunity to advance beyond categorizing forms of mathematical distributions that describe biodiversity patterns and move into a predictive framework where the true constraints on ecosystems and their dynamics emerge.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3