Differentiating spillover: an examination of cross-habitat movement in ecology

Author:

Harman Rachel R.1ORCID,Kim Tania N.1ORCID

Affiliation:

1. Department of Entomology, Kansas State University, 123 W. Waters Hall, Manhattan, KS 66506, USA

Abstract

Organisms that immigrate into a recipient habitat generate a movement pattern that affects local population dynamics and the environment. Spillover is the pattern of unidirectional movement from a donor habitat to a different, adjacent recipient habitat. However, ecological definitions are often generalized to include any cross-habitat movement, which limits within- and cross-discipline collaboration. To assess spillover nomenclature, we reviewed 337 studies within the agriculture, disease, fisheries and habitat fragmentation disciplines. Each study's definition of spillover and the methods used were analysed. We identified four descriptors (movement, habitat type and arrangement, and effect) used that differentiate spillover from other cross-habitat movement patterns (dispersal, foray loops and edge movement). Studies often define spillover as movement (45%) but rarely measure it as such (4%), particularly in disease and habitat fragmentation disciplines. Consequently, 98% of studies could not distinguish linear from returning movement out of a donor habitat, which can overestimate movement distance. Overall, few studies (12%) included methods that matched their own definition, revealing a distinct mismatch. Because theory shows that long-term impacts of the different movement patterns can vary, differentiating spillover from other movement patterns is necessary for effective long-term and inter-disciplinary management of organisms that use heterogeneous landscapes.

Funder

Kansas State University

Publisher

The Royal Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3