Still air resistance during walking and running

Author:

Pecchiari Matteo M.1ORCID,Legramandi Mario A.1ORCID,Gibertini Giuseppe2ORCID,Cavagna Giovanni A.1ORCID

Affiliation:

1. Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy

2. Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Milano, Italy

Abstract

In everyday life during terrestrial locomotion our body interacts with two media opposing the forward movement of the body: the ground and the air. Whereas the work done to overcome the ground reaction force has been extensively studied, the work done to overcome still air resistance has been only indirectly estimated by means of theoretical studies and by measurements of the force exerted on puppets simulating the geometry of the human body. In this study, we directly measured the force exerted by still air resistance on eight male subjects during walking and running on an instrumented treadmill with a belt moving at the same speed of a flow of laminar air facing the subject. Overall, the coefficient of proportionality between drag and velocity squared ( A eff ) was smaller during running than walking. During running A eff decreased progressively with increasing average velocity up to an apparently constant, velocity independent value, similar to that predicted in the literature using indirect methods. A predictive equation to estimate drag as a function of the speed and the height of the running subject is provided.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Still air resistance during walking and running;Proceedings of the Royal Society B: Biological Sciences;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3