Interhemispheric communication during haptic self-perception

Author:

Kong Gaiqing12,Cataldo Antonio13,Nitu Miruna1,Dupin Lucile4,Gomi Hiroaki5,Haggard Patrick16ORCID

Affiliation:

1. Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK

2. Neuroscience Research Centre of Lyon, INSERM U1028—CNRS UMR5292, Inserm Building, 16 avenue du doyen Lépine, 69500 Bron, France

3. Institute of Philosophy, University of London, Senate House, Malet Street, London WC1E 7HU, UK

4. Institut de Psychiatrie et Neurosciences de Paris, Inserm U 1266—Université de Paris—Hôpital Sainte-Anne, Paris, France

5. NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan

6. Chaire Blaise Pascal de la Région Ile de France, Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France

Abstract

During the haptic exploration of a planar surface, slight resistances against the hand's movement are illusorily perceived as asperities (bumps) in the surface. If the surface being touched is one's own skin, an actual bump would also produce increased tactile pressure from the moving finger onto the skin. We investigated how kinaesthetic and tactile signals combine to produce haptic perceptions during self-touch. Participants performed two successive movements with the right hand. A haptic force-control robot applied resistances to both movements, and participants judged which movement was felt to contain the larger bump. An additional robot delivered simultaneous but task-irrelevant tactile stroking to the left forearm. These strokes contained either increased or decreased tactile pressure synchronized with the resistance-induced illusory bump encountered by the right hand. We found that the size of bumps perceived by the right hand was enhanced by an increase in left tactile pressure, but also by a decrease. Tactile event detection was thus transferred interhemispherically, but the sign of the tactile information was not respected. Randomizing (rather than blocking) the presentation order of left tactile stimuli abolished these interhemispheric enhancement effects. Thus, interhemispheric transfer during bimanual self-touch requires a stable model of temporally synchronized events, but does not require geometric consistency between hemispheric information, nor between tactile and kinaesthetic representations of a single common object.

Funder

Fondation Fyssen

NTT

UCL

The Nippon Telegraph and Telephone Corporation, Japan

European Union

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interhemispheric communication during haptic self-perception;Proceedings of the Royal Society B: Biological Sciences;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3