Experimental manipulation of photoperiod influences migration timing in a wild, long-distance migratory songbird

Author:

Bani Assadi Saeedeh1ORCID,Fraser Kevin Charles2

Affiliation:

1. University of Manitoba, Winnipeg, Canada R3T 2N2

2. University of Manitoba Ringgold standard institution, Winnipeg, Canada

Abstract

Previous laboratory studies have demonstrated the role of photoperiod in cueing the migration timing of small land birds; however, how migration timing of young birds in wild environments develops in relation to these cues have rarely been investigated. Such investigations can make important contributions to our developing understanding of the phenotypic plasticity of migration timing to new conditions with climate change, where changes in the timing of nesting may expose juvenile birds to different photoperiods. We investigated the impact of manipulating photoperiod during nestling development in a long-distance migratory songbird on the timing of post-breeding movements in the wild. Using programmable lighting installed in the nest-boxes of purple martins ( Progne subis ), we exposed developing nestlings, from hatch to fledge date, to an extended photoperiod that matched the day length of the summer solstice in Manitoba, Canada. We found that birds with a simulated, earlier photoperiod had a longer nesting period and later fledge and autumn departure dates than control group birds. This study demonstrates the phenotypic plasticity of first-year birds to the ontogenetic effect of their hatch date in the formation of the timing of their first post-breeding movements. Further, we discuss how these results have implications for the potential use of assisted evolution approaches to alter migration timing to match new conditions with climate change.

Funder

Canadian Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

University of Manitoba

Research Manitoba

John R. Evans Leaders Fund

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3