Sensory biases in response to novel complex acoustic signals in male and female grey treefrogs, Hyla chrysoscelis

Author:

Reichert Michael S.1ORCID,de la Hera Iván1ORCID

Affiliation:

1. Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

The sensory bias hypothesis proposes that female preferences for male sexual signalling traits evolved in contexts other than mating. Individuals of both sexes may experience similar selection pressures in these contexts; thus males may have similar biases to females for variation in signal traits. We tested this prediction in the grey treefrog, Hyla chrysoscelis , in which males produce simple advertisement calls, but females are more attracted to certain novel complex stimuli. We recorded males' responses to playbacks of both simple advertisement calls and complex calls consisting of the advertisement call with an acoustic appendage (filtered noise, or heterospecific call pulses) either leading or following the call. We tested females’ preferences for the same stimuli in phonotaxis tests. We found evidence for a sensory bias in both sexes: males gave more aggressive calls in response to complex stimuli and females sometimes preferred complex over simple calls. These biases were not universal and depended on both temporal order and appendage characteristics, but how these effects manifested differed between the sexes. Ultimately, our approach of studying biases of both sexes in response to novel mating signals will shed light on the origin of mating preferences, and the mechanisms by which sensory biases operate.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference62 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3