Seasonality drives the survival landscape of a recovering forest carnivore in a changing world

Author:

Smith Matthew M.1ORCID,Erb John D.2,Pauli Jonathan N.1ORCID

Affiliation:

1. Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA

2. Minnesota Department of Natural Resources, Forest Wildlife Populations and Research Group, Grand Rapids, MN 55744, USA

Abstract

Ecological heterogeneity promotes species persistence and diversity. Environmental change has, however, eroded patterns of heterogeneity globally, stifling species recovery. To test the effects of seasonal heterogeneity on a reintroduced carnivore, American martens ( Martes americana ), we compared metrics of local and season-specific heterogeneity to traditional forest metrics on the survival of 242 individuals across 8 years and predicted a survival landscape for 13 reintroduction sites. We found that heterogeneity—created by forest structure in the growing season and snow in the winter—improved survival and outperformed traditional forest metrics. Spatial variation in heterogeneity created a distinct survival landscape, but seasonal change in heterogeneity generated temporal discordance. All translocation sites possessed high forest heterogeneity but there were greater differences in winter heterogeneity; recovery sites with the poorest snow conditions had the lowest viability. Our work links heterogeneity across seasons to fitness and suggests that management strategies that increase seasonal aspects of heterogeneity may help to recover other sensitive species to continuing environmental change.

Funder

Minnesota Department of Natural Resources

National Institute of Food and Agriculture

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3