Cellular and environmental dynamics influence species-specific extents of organelle gene retention

Author:

García Pascual Belén1,Nordbotten Jan M.1,Johnston Iain G.12ORCID

Affiliation:

1. Department of Mathematics, University of Bergen, Bergen, Norway

2. Computational Biology Unit, University of Bergen, Bergen, Norway

Abstract

Mitochondria and plastids rely on many nuclear-encoded genes, but retain small subsets of the genes they need to function in their own organelle DNA (oDNA). Different species retain different numbers of oDNA genes, and the reasons for these differences are not completely understood. Here, we use a mathematical model to explore the hypothesis that the energetic demands imposed by an organism’s changing environment influence how many oDNA genes it retains. The model couples the physical biology of cell processes of gene expression and transport to a supply-and-demand model for the environmental dynamics to which an organism is exposed. The trade-off between fulfilling metabolic and bioenergetic environmental demands, and retaining genetic integrity, is quantified for a generic gene encoded either in oDNA or in nuclear DNA. Species in environments with high-amplitude, intermediate-frequency oscillations are predicted to retain the most organelle genes, whereas those in less dynamic or noisy environments the fewest. We discuss support for, and insight from, these predictions with oDNA data across eukaryotic taxa, including high oDNA gene counts in sessile organisms exposed to day-night and intertidal oscillations (including plants and algae) and low counts in parasites and fungi.

Funder

H2020 European Research Council

Peder Sather Centre

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3