The Nitroplast and Its Relatives Support a Universal Model of Features Predicting Gene Retention in Endosymbiont and Organelle Genomes

Author:

Johnston Iain G12ORCID

Affiliation:

1. Department of Mathematics, University of Bergen , Bergen , Norway

2. Computational Biology Unit, University of Bergen , Bergen , Norway

Abstract

Abstract Endosymbiotic relationships have shaped eukaryotic life. As endosymbionts coevolve with their host, toward full integration as organelles, their genomes tend to shrink, with genes being completely lost or transferred to the host nucleus. Modern endosymbionts and organelles show diverse patterns of gene retention, and why some genes and not others are retained in these genomes is not fully understood. Recent bioinformatic study has explored hypothesized influences on these evolutionary processes, finding that hydrophobicity and amino acid chemistry predict patterns of gene retention, both in organelles across eukaryotes and in less mature endosymbiotic relationships. The exciting ongoing elucidation of endosymbiotic relationships affords an independent set of instances to test this theory. Here, we compare the properties of retained genes in the nitroplast, recently reported to be an integrated organelle, two related cyanobacterial endosymbionts that form “spheroid bodies” in their host cells, and a range of other endosymbionts, with free-living relatives of each. We find that in each case, the symbiont's genome encodes proteins with higher hydrophobicity and lower amino pKa than their free-living relative, supporting the data-derived model predicting the retention propensity of genes across endosymbiont and organelle genomes.

Funder

European Research Council

European Union's Horizon 2020 Research and Innovation Program

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3