Affiliation:
1. CNRS, Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
Abstract
Inbreeding depression, that is the decrease in fitness of inbred relative to outbred individuals, was shown to increase strongly as life expectancy increases in plants. Because plants are thought to not have a separated germline, it was proposed that this pattern could be generated by somatic mutations accumulating during growth, since larger and more long-lived species have more opportunities for mutations to accumulate. A key determinant of the role of somatic mutations is the rate at which they occur, which probably differs between species because mutation rates may evolve differently in species with constrasting life histories. In this paper, I study the evolution of the mutation rates in plants, and consider the population-level consequences of inheritable somatic mutations given this evolution. I show that despite substantially lower somatic and meiotic mutation rates, more long-lived species still tend to accumulate larger amounts of deleterious mutations because of the increased number of opportunities they have to acquire mutations during growth, leading to higher levels of inbreeding depression in these species. However, the magnitude of this increase depends strongly on how mutagenic meiosis is relative to growth, to the point of being close to non-existent in some situations.
Funder
Région Hauts-de-France
H2020 European Research Council
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献