Identification of 5mC within heterogenous tissue usingde-novosomatic mutations

Author:

Wilcox Justin Jon SchaderORCID,Foucault Quentin Jean Robert,Gossmann Toni IngolfORCID

Abstract

AbstractTissues represent a fundamental evolutionary interface at the junction of genotype and phenotype. Indeed, gene regulation often occurs at the tissue level and manifests itself through tissue-specific epigenetic modifications. Studies investigating tissue epigenetics are limited by access to pure tissues. Tissues not only differ epigenetically, they are also subject to genetic differentiation through somatic mutations. As somatic mutations follow predictable patterns of inheritance, the application of population genomic approaches to inter- and intra-tissue variation could allow for the efficient detection of epigenetic modifications, even when tissue samples are convoluted. Here, we present an approach that usesde-novosomatic mutations to deconvolute 5mC methylation patterns through analysis of shifts in tissue-specific allele frequencies. We use simulations and bisulfite sequencing data to show that somatic mutations are common and detectable in next-generation sequencing data. We then use changes in mutation frequencies to accurately derive the proportional tissue of origin along a gradient ofin silicosubsamples of mixed-tissue bisulfite reads. We confirm that mixed tissues bias estimates of methylation levels and prevent detection of methylation differences at high levels of mixture. Our derived estimates of tissue contamination allow for unbiased and accurate deconvolution of mixed-tissue methylations in CpG and non-CpG context. We are ultimately able to recover 15-30% of differentially-methylated sites, and approximately 40-90% of differentially-methylated CpG islands and gene bodies in any cytosine context at contamination levels up to 90%. Our findings highlight the utility of population genomic approaches across scales, and expand the accessibility of epigenetics studies within evolutionary biology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3