Drivers of microbial food-web structure along productivity gradients

Author:

Burian Alfred123ORCID,Gruber-Dorninger Martin3,Schweichart Johannes4,Yasindi Andrew5,Bulling Mark6,Jirsa Franz78ORCID,Winter Christian3,Muia Anastasia W.5ORCID,Schagerl Michael3

Affiliation:

1. Department of Computational Landscape Ecology, UFZ– Helmholtz Centre for Environmental Research, Leipzig, Germany

2. Marine Ecology Department, Lurio University, Nampula, Mozambique

3. Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria

4. Biology Centre, University of South Bohemia in České, České Budějovice, Czech Republic

5. Department of Biological Sciences, Egerton University, Njoro, Kenya

6. Environmental Sustainability Research Centre, University of Derby, Derby, UK

7. Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria

8. Department of Zoology, University of Johannesburg, Johannesburg, South Africa

Abstract

Ratios between viruses, heterotrophic prokaryotes and chlorophyll a are key indicators of microbial food structure and both virus–prokaryote and prokaryote–chlorophyll ratios have been proposed to decrease with system productivity. However, the mechanisms underlying these responses are still insufficiently resolved and their consistency across aquatic ecosystem types requires critical evaluation. We assessed microbial community ratios in highly productive African soda-lakes and used our data from naturally hypereutrophic systems which are largely underrepresented in literature, to complement earlier across-system meta-analyses. In contrast to marine and freshwater systems, prokaryote–chlorophyll ratios in African soda-lakes did not decrease along productivity gradients. High-resolution time series from two soda-lakes indicated that this lack of response could be driven by a weakened top–down control of heterotrophic prokaryotes. Our analysis of virus–prokaryote relationships, revealed a reduction of virus–prokaryote ratios by high suspended particle concentrations in soda-lakes. This effect, likely driven by the adsorption of free-living viruses, was also found in three out of four additionally analysed marine datasets. However, the decrease of virus–prokaryote ratios previously reported in highly productive marine systems, was neither detectable in soda-lakes nor freshwaters. Hence, our study demonstrates that system-specific analyses can reveal the diversity of mechanisms that structure microbial food-webs and shape their response to productivity increases.

Funder

Austrian Science Fund

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drivers of microbial food-web structure along productivity gradients;Proceedings of the Royal Society B: Biological Sciences;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3