Coupling cell proliferation rates to the duration of recruitment controls final size of the Drosophila wing

Author:

Diaz-Torres Elizabeth1,Muñoz-Nava Luis Manuel1,Nahmad Marcos1ORCID

Affiliation:

1. Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. Instituto Politecnico Nacional 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico

Abstract

Organ growth driven by cell proliferation is an exponential process. As a result, even small variations in proliferation rates, when integrated over a relatively long developmental time, will lead to large differences in size. How organs robustly control their final size despite perturbations in cell proliferation rates throughout development is a long-standing question in biology. Using a mathematical model, we show that in the developing wing of the fruit fly, Drosophila melanogaster , variations in proliferation rates of wing-committed cells are inversely proportional to the duration of cell recruitment, a differentiation process in which a population of undifferentiated cells adopt the wing fate by expressing the selector gene, vestigial . A time-course experiment shows that vestigial-expressing cells increase exponentially while recruitment takes place, but slows down when recruitable cells start to vanish, suggesting that undifferentiated cells may be driving proliferation of wing-committed cells. When this observation is incorporated in our model, we show that the duration of cell recruitment robustly determines a final wing size even when cell proliferation rates of wing-committed cells are perturbed. Finally, we show that this control mechanism fails when perturbations in proliferation rates affect both wing-committed and recruitable cells, providing an experimentally testable hypothesis of our model.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3