Timing of reproduction modifies transgenerational effects of chronic exposure to stressors in an annual vertebrate

Author:

Magierecka Agnieszka1ORCID,Aristeidou Antreas1ORCID,Papaevripidou Maria1,Gibson John K.1,Sloman Katherine A.2ORCID,Metcalfe Neil B.1ORCID

Affiliation:

1. School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK

2. Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire G72 0LH, UK

Abstract

Stressful environmental conditions can shape both an individual's phenotype and that of its offspring. However, little is known about transgenerational effects of chronic (as opposed to acute) stressors, nor whether these vary across the breeding lifespan of the parent. We exposed adult female (F0 generation) three-spined sticklebacks ( Gasterosteus aculeatus ) to chronic environmental stressors and compared their reproductive allocation with that of non-exposed controls across early, middle and late clutches produced within the single breeding season of this annual population. There was a seasonal trend (but no treatment difference) in F0 reproductive allocation, with increases in egg mass and fry size in late clutches. We then tested for transgenerational effects in the non-exposed F1 and F2 generations. Exposure of F0 females to stressors resulted in phenotypic change in their offspring and grandoffspring that were produced late in their breeding lifespan: F1 offspring produced from the late-season clutches of stressor-exposed F0 females had higher early life survival, and subsequently produced heavier eggs and F2 fry that were larger at hatching. Changed maternal allocation due to a combination of seasonal factors and environmental stressors can thus have a transgenerational effect by influencing the reproductive allocation of daughters, especially those born late in life.

Funder

European Research Council Advanced Grant

Fisheries Society of the British Isles

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3