Complex patch geometry promotes species coexistence through a reverse competition–colonization trade-off

Author:

Rynne Nina1ORCID,Birtles Geneva1,Bell Jamie2,Pau Duhlian Mung Suan3,McNeil Samuel4,Mehrpooya Adel1,Noske Blake3ORCID,Vakeesan Yadursha3,Bode Michael1ORCID

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology, 4 George Street, Brisbane, Queensland 4000, Australia

2. School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales 2522, Australia

3. School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria 3001, Australia

4. College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales 2300, Australia

Abstract

Explaining the maintenance of diverse species assemblages is a central goal of ecology and conservation. Recent coexistence mechanisms highlight the role of dispersal as a source of the differences that allow similar species to coexist. Here, we propose a new mechanism for species coexistence that is based on dispersal differences, and on the geometry of the habitat patch. In a finite habitat patch with complex boundaries, species with different dispersal abilities will arrange themselves in stable, concentric patterns of dominance. Species with superior competitive and dispersal abilities will dominate the interior of the patch, with inferior species at the periphery. We demonstrate and explain the mechanism on a simple one-dimensional domain, and then on two-dimensional habitat patches with realistic geometries. Finally, we use metrics from landscape ecology to demonstrate that habitat patches with more complex geometries can more easily support coexistence. The factors that underpin this new coexistence mechanism—different dispersal abilities and habitat patches with complex geometries—are common to many marine and terrestrial ecosystems, and it is therefore possible that the mechanism is a common factor supporting diverse species assemblages.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3