Sampling biases obscure the early diversification of the largest living vertebrate group

Author:

Henderson Struan1ORCID,Dunne Emma M.12ORCID,Giles Sam13ORCID

Affiliation:

1. School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

2. GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany

3. Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

Abstract

Extant ray-finned fishes (Actinopterygii) dominate marine and freshwater environments, yet spatio-temporal diversity dynamics following their origin in the Palaeozoic are poorly understood. Previous studies investigate face-value patterns of richness, with only qualitative assessment of biases acting on the Palaeozoic actinopterygian fossil record. Here, we investigate palaeogeographic trends, reconstruct local richness and apply richness estimation techniques to a recently assembled occurrence database for Palaeozoic ray-finned fishes. We identify substantial fossil record biases, such as geographical bias in sampling centred around Europe and North America. Similarly, estimates of diversity are skewed by extreme unevenness in the occurrence distributions, reflecting historical biases in sampling and taxonomic practices, to the extent that evenness has an overriding effect on diversity estimates. Other than a genuine rise in diversity in the Tournaisian following the end-Devonian mass extinction, diversity estimates for Palaeozoic actinopterygians appear to lack biological signal, are heavily biased and are highly dependent on sampling. Increased sampling of poorly represented regions and expanding sampling beyond the literature to include museum collection data will be critical in obtaining accurate estimates of Palaeozoic actinopterygian diversity. In conjunction, applying diversity estimation techniques to well-sampled regional subsets of the ‘global’ dataset may identify accurate local diversity trends.

Funder

Leverhulme Research Project Grant

Royal Society

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3