Affiliation:
1. Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
Abstract
How does the brain maintain an accurate visual representation of external space? Movement errors following saccade execution provide sufficient information to recalibrate motor and visual space. Here, we asked whether spatial information for vision and saccades is processed in shared or in separate resources. We used saccade adaptation to modify both, saccade amplitudes and visual mislocalization. After saccade adaptation was induced, we compared participants' saccadic and perceptual localization before and after we inserted ‘no error’ trials. In these trials, we clamped the post-saccadic error online to the predicted endpoints of saccades. In separate experiments, we either annulled the retinal or the prediction error. We also varied the number of ‘no error’ trials across conditions. In all conditions, we found that saccade adaptation remained undisturbed by the insertion of ‘no error’ trials. However, mislocalization decreased as a function of the number of trials in which zero retinal error was displayed. When the prediction error was clamped to zero, no mislocalization was observed at all. The results demonstrate the post-saccadic error is used separately to recalibrate visual and saccadic space.
Funder
H2020 European Research Council
H2020 Marie Skłodowska-Curie Actions
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献