Supplemental oxygen does not improve growth but can enhance reproductive capacity of fish

Author:

Skeeles Michael R.1ORCID,Scheuffele Hanna1ORCID,Clark Timothy D.1

Affiliation:

1. School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia

Abstract

Fish tend to grow faster as the climate warms but attain a smaller adult body size following an earlier age at sexual maturation. Despite the apparent ubiquity of this phenomenon, termed the temperature-size rule (TSR), heated scientific debates have revealed a poor understanding of the underlying mechanisms. At the centre of these debates are prominent but marginally tested hypotheses which implicate some form of ‘oxygen limitation’ as the proximate cause. Here, we test the role of oxygen limitation in the TSR by rearing juvenile Galaxias maculatus for a full year in current-day (15°C) and forecasted (20°C) summer temperatures while providing half of each temperature group with supplemental oxygen (hyperoxia). True to the TSR, fish in the warm treatments grew faster and reached sexual maturation earlier than their cooler conspecifics. Yet, despite supplemental oxygen significantly increasing maximum oxygen uptake rate, our findings contradict leading hypotheses by showing that the average size at sexual maturation and the adult body size did not differ between normoxia and hyperoxia groups. We did, however, discover that hyperoxia extended the reproductive window, independent of fish size and temperature. We conclude that the intense resource investment in reproduction could expose a bottleneck where oxygen becomes a limiting factor.

Funder

Australian Research Council

Deakin University

Australian Government

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3