Group-beneficial traits, frequency-dependent selection and genotypic diversity: an antibiotic resistance paradigm

Author:

Dugatkin Lee Alan1,Perlin Michael1,Lucas J. Scott1,Atlas Ronald1

Affiliation:

1. Department of Biology, University of LouisvilleLouisville, KY 40208USA

Abstract

The evolution of group-beneficial traits potentially allows the survival of 'cheaters' that would otherwise be unfit. Here we describe experimental work on group-beneficial traits and the consequences of frequency-dependent selection in the context of bacterial antibiotic resistance. We constructed a 'self-limited antibiotic resistant' (SLAR) strain of Escherichia coli in which a TEM-1 ß-lactamase was anchored to the inner membrane. In pairwise competition experiments between the SLAR strain and ampicillin-sensitive strains, only the SLAR strain survived in the presence of ampicillin. We also constructed a 'shared antibiotic resistant' (SAR) strain in which TEM-1 ß-lactamase protected both the SAR strain and nearby sensitive cells, thus acting as a model for a genetically defined group-beneficial trait. In pairwise competition experiments of the SAR strain against two different sensitive strains of E. coli , we found that the sensitive strains maintained themselves at frequencies of 5-12% in the presence of ampicillin. When the relative cost of the SAR strain was lowered, its equilibrial frequency rose. Sensitive strains also arose from pure cultures of the SAR strain. In these cases, too, the sensitive 'cheaters' were maintained in ampicillin at frequencies comparable to those observed in the previous competitions. These results suggest that traits which benefit other group members can permit survival of genotypes that otherwise would be eliminated by natural selection, and allow the maintenance of greater genetic variation upon which evolution can operate.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3