When does antimicrobial resistance increase bacterial fitness? Effects of dosing, social interactions, and frequency dependence on the benefits of AmpC β-lactamases in broth, biofilms, and a gut infection model

Author:

Penkova Elitsa1,Raymond Ben2ORCID

Affiliation:

1. European Centre for Envronment and Human Health, Environment and Sustainability Institute, University of Exeter , Penryn , United Kingdom

2. Department for Ecology and Conservation, University of Exeter , Penryn , United Kingdom

Abstract

Abstract One of the longstanding puzzles of antimicrobial resistance is why the frequency of resistance persists at intermediate levels. Theoretical explanations for the lack of fixation of resistance include cryptic costs of resistance or negative frequency-dependence but are seldom explored experimentally. β-lactamases, which detoxify penicillin-related antibiotics, have well-characterized frequency-dependent dynamics driven by cheating and cooperation. However, bacterial physiology determines whether β-lactamases are cooperative, and we know little about the sociality or fitness of β-lactamase producers in infections. Moreover, media-based experiments constrain how we measure fitness and ignore important parameters such as infectivity and transmission among hosts. Here, we investigated the fitness effects of broad-spectrum AmpC β-lactamases in Enterobacter cloacae in broth, biofilms, and gut infections in a model insect. We quantified frequency- and dose-dependent fitness using cefotaxime, a third-generation cephalosporin. We predicted that infection dynamics would be similar to those observed in biofilms, with social protection extending over a wide dose range. We found evidence for the sociality of β-lactamases in all contexts with negative frequency-dependent selection, ensuring the persistence of wild-type bacteria, although cooperation was less prevalent in biofilms, contrary to predictions. While competitive fitness in gut infections and broth had similar dynamics, incorporating infectivity into measurements of fitness in infections significantly affected conclusions. Resistant bacteria had reduced infectivity, which limited the fitness benefits of resistance to infections challenged with low antibiotic doses and low initial frequencies of resistance. The fitness of resistant bacteria in more physiologically tolerant states (in biofilms, in infections) could be constrained by the presence of wild-type bacteria, high antibiotic doses, and limited availability of β-lactamases. One conclusion is that increased tolerance of β-lactams does not necessarily increase selection pressure for resistance. Overall, both cryptic fitness costs and frequency dependence curtailed the fitness benefits of resistance in this study.

Funder

Natural Environment Research Council

BBSRC

Publisher

Oxford University Press (OUP)

Reference78 articles.

1. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle;Alexander,2008

2. Biofilms facilitate cheating and social exploitation of β-lactam resistance in Escherichia coli;Amanatidou,2019

3. Persistence of antibiotic resistance in bacterial populations;Andersson,2011

4. Exposure to sub-inhibitory concentrations of gentamicin, ciprofloxacin and cefotaxime induces multidrug resistance and reactive oxygen species generation in meticillin-sensitive Staphylococcus aureus;Bhattacharya,2017

5. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: The importance of interaction between antibiotic exposed and non-exposed populations;Bogri,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3