Metapopulation extinction risk is increased by environmental stochasticity and assemblage complexity

Author:

Bull James C12,Pickup Nicola J13,Pickett Brian1,Hassell Michael P1,Bonsall Michael B13

Affiliation:

1. Division of Biology, Imperial College LondonSilwood Park Campus, Ascot, Berkshire SL5 7PY, UK

2. Institute of Zoology, Zoological Society of LondonRegent's Park, London NW1 4RY, UK

3. Department of Zoology, University of OxfordSouth Parks Road, Oxford OX1 3PS, UK

Abstract

Extinction risk is a key area of investigation for contemporary ecologists and conservation biologists. Practical conservation efforts for vulnerable species can be considerably enhanced by thoroughly understanding the ecological processes that interact to determine species persistence or extinction. Theory has highlighted the importance of both extrinsic environmental factors and intrinsic demographic processes. In laboratory microcosms, single-species single-habitat patch experimental designs have been widely used to validate the theoretical prediction that environmental heterogeneity can increase extinction risk. Here, we develop on this theme by testing the effects of fluctuating resource levels in experimental multispecies metapopulations. We compare a three-species host–parasitoid assemblage that exhibits apparent competition to the individual pairwise, host–parasitoid interactions. Existing theory is broadly supported for two-species assemblages: environmental stochasticity reduces trophic interaction persistence time, while metapopulation structure increases persistence time. However, with increasing assemblage complexity, the effects of trophic interactions mask environmental impacts and persistence time is further reduced, regardless of resource renewal regime. We relate our findings to recent theory, highlighting the importance of taking into account both intrinsic and extrinsic factors, over a range of spatial scales, in order to understand resource–consumer dynamics.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3