The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes

Author:

Mora Camilo1,Tittensor Derek P1,Myers Ransom A1

Affiliation:

1. Department of Biology, Dalhousie UniversityHalifax, Nova Scotia, Canada B3H 4J1

Abstract

Taxonomic inventories (or species censuses) are the most elementary data in biogeography, macroecology and conservation biology. They play fundamental roles in the construction of species richness patterns, delineation of species ranges, quantification of extinction risk and prioritization of conservation efforts in hot spot areas. Given their importance, any issue related to the completeness of taxonomic inventories can have far-reaching consequences. Here, we used the largest publicly available database of georeferenced marine fish records to determine its usefulness in depicting the diversity and distribution of this taxonomic group. All records were grouped at multiple spatial resolutions to generate accumulation curves, from which the expected number of species were extrapolated using a variety of nonlinear models. Comparison of the inventoried number of species with that expected from the models was used to calculate the completeness of the taxonomic inventory at each resolution. In terms of the global number of fish species, we found that approximately 21% of the species remain to be described. In terms of spatial distribution, we found that the completeness of taxonomic data was highly scale dependent, with completeness being lower at finer spatial resolutions. At a 3° (approx. 350 km 2 ) spatial resolution, less than 1.8% of the world's oceans have above 80% of their fish fauna currently described. Censuses of species were particularly incomplete in tropical areas and across the entire range of countries' gross domestic product (GDP), although the few censuses nearing completion were all along the coasts of a few developed countries or territories. Our findings highlight that failure to quantify the completeness of taxonomic inventories can introduce substantial flaws in the description of diversity patterns, and raise concerns over the effectiveness of conservation strategies based upon data that remain largely precarious.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3