What remains to be discovered: A global assessment of tree species inventory completeness

Author:

Chanachai Jariya1ORCID,Asamoah Ernest F.1ORCID,Maina Joseph M.1ORCID,Wilson Peter D.1ORCID,Nipperess David A.12ORCID,Esperon‐Rodriguez Manuel34ORCID,Beaumont Linda J.1ORCID

Affiliation:

1. School of Natural Sciences Macquarie University North Ryde New South Wales Australia

2. Department of Planning and Environment Parramatta New South Wales Australia

3. Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia

4. School of Science Western Sydney University Penrith New South Wales Australia

Abstract

AbstractAimRecent unprecedented efforts to digitise and mobilise biodiversity data have resulted in the generation of ‘biodiversity big data’, enabling ecological research at scales previously not possible. However, gaps, biases and uncertainties in these data influence analytical outcomes and the validity of scientific research and conservation actions. Here, we estimated tree species inventory completeness globally and identified where future surveys should focus to maximise regional inventories.LocationGlobal.MethodsWe analysed spatial patterns in sampling effort of tree species occurrence records from the Global Biodiversity and Information Facility (GBIF) and estimated global tree species inventory completeness for 100 × 100 km grid cells (sampling units) and ecoregions. We also identified forested areas for future botanical exploration, by examining the spatial overlap between inventory completeness, remaining natural habitat and protected areas and degrees of forest modification by anthropogenic pressure (forest integrity).ResultsSpatial patterns in sampling effort and tree species inventory completeness were unevenly distributed around the world. Only 35% of ecoregions and 18% of sampling units can be considered well surveyed, most of which were concentrated in the Global North, including Europe, North America and Australia. Large areas in species‐rich tropical regions, especially in Southeast Asia, remained poorly documented. Moreover, our results showed that many areas with low inventory completeness overlapped with ecoregions retaining less than 50% of natural habitat and protected land area, as well as sampling units with low forest integrity.Main ConclusionsDue to limitations in biodiversity data, simply sampling more will not necessarily lead to increasing knowledge. We illustrated how gaps in these data can be used to improve existing knowledge by identifying priority areas for future surveys. With ongoing anthropogenic impacts and escalating rates of biodiversity loss, limited resources should be allocated to strategically survey regions likely to yield new knowledge and improve biodiversity representativeness.

Funder

Macquarie University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3