Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis

Author:

Voigt Dagmar12,Gorb Stanislav12

Affiliation:

1. Evolutionary Biomaterials Group, Department of Thin Films and Biological Systems, Max-Planck Institute for Metals Research, Heisenbergstraße 03, 70569 Stuttgart, Germany

2. Department of Functional Morphology and Biomechanics, Zoological Institute at the Christian Albrechts University of Kiel, Am Botanischen Garten 1–9, 24098 Kiel, Germany

Abstract

Plant surfaces covered with crystalline epicuticular waxes are known to be anti-adhesive, hardly wettable and preventing insect attachment. But there are insects that are capable of gluing their eggs to these surfaces by means of proteinaceous secretions. In this study, we analysed the bonding region between the eggs of Crioceris asparagi and the plant surface of Asparagus officinalis using light and cryo-scanning electron microscopy. The wettability of the plant surface by egg secretion was compared with that by Aqua Millipore water, aqueous sugar solution and chicken egg white. Furthermore, the force required to remove C. asparagi eggs from the plant surface was measured, in order to evaluate the egg's bonding strength. Mean pull-off force was 14.7 mN, which is about 8650 times higher than the egg weight. Egg glue was observed spreading over the wax crystal arrays on the plant cladophyll and wetting them. Similar wetting behaviour on the A. officinalis surface was observed for chicken egg white. Our results support the hypothesis that the mechanism of insect egg adhesion on micro- and nanostructured hydrophobic plant surfaces is related to the proteinaceous nature of adhesive secretions of insect eggs. The secretion wets superhydrophobic surfaces and after solidifying builds up a composite, consisting of the solidified glue and wax crystals, at the interface between the egg and plant cuticle.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3