Mechanoecology: biomechanical aspects of insect-plant interactions

Author:

Salerno GianandreaORCID,Rebora ManuelaORCID,Gorb Elena,Gorb StanislavORCID

Abstract

AbstractPlants and herbivorous insects as well as their natural enemies, such as predatory and parasitoid insects, are united by intricate relationships. During the long period of co-evolution with insects, plants developed a wide diversity of features to defence against herbivores and to attract pollinators and herbivores’ natural enemies. The chemical basis of insect-plant interactions is established and many examples are studied, where feeding and oviposition site selection of phytophagous insects are dependent on the plant’s secondary chemistry. However, often overlooked mechanical interactions between insects and plants can be rather crucial. In the context of mechanoecology, the evolution of plant surfaces and insect adhesive pads is an interesting example of competition between insect attachment systems and plant anti-attachment surfaces. The present review is focused on mechanical insect-plant interactions of some important pest species, such as the polyphagous Southern Green Stinkbug Nezara viridula and two frugivorous pest species, the polyphagous Mediterranean fruit fly Ceratitis capitata and the monophagous olive fruit fly Bactrocera oleae. Their ability to attach to plant surfaces characterised by different features such as waxes and trichomes is discussed. Some attention is paid also to Coccinellidae, whose interaction with plant leaf surfaces is substantial across all developmental stages in both phytophagous and predatory species that feed on herbivorous insects. Finally, the role of different kinds of anti-adhesive nanomaterials is discussed. They can reduce the attachment ability of insect pests to natural and artificial surfaces, potentially representing environmental friendly alternative methods to reduce insect pest impact in agriculture.

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Centennial issue;Journal of Comparative Physiology A;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3