Termites eavesdrop to avoid competitors

Author:

Evans Theodore A.1,Inta Ra12,Lai Joseph C. S.2,Prueger Stefan2,Foo Nyuk Wei2,Fu Eugene Wei'en2,Lenz Michael1

Affiliation:

1. Division of Entomology, Commonwealth Scientific and Industrial Research Organization, Clunies Ross Street, Canberra ACT 2600, Australia

2. School Engineering and Information Technology, Australian Defence Force Academy, University of New South Wales, Canberra ACT 2600, Australia

Abstract

Competition exclusion, when a single species dominates resources due to superior competitiveness, is seldom observed in nature. Termites compete for resources with deadly consequences, yet more than one species can be found feeding in the same wooden resource. This is especially surprising when drywood species, with colonies of a few hundred, are found cohabiting with subterranean species, with colonies of millions. Termites communicate vibro-acoustically and, as these signals can travel over long distances, they are vulnerable to eavesdropping. We investigated whether drywood termites could eavesdrop on vibration cues from subterranean species. We show, using choice experiments and recordings, that the drywood termite Cryptotermes secundus can distinguish its own species from the dominant competitor in the environment, the subterranean termite Coptotermes acinaciformis . The drywood termite was attracted to its own vibration cues, but was repelled by those of the subterranean species. This response increased with decreasing wood size, corresponding with both increased risk and strength of the cue. The drywood termites appear to avoid confrontation by eavesdropping on the subterranean termites; these results provide further evidence that vibro-acoustic cues are important for termite sensory perception and communication.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3