Size and scale effects as constraints in insect sound communication

Author:

Bennet-Clark H. C.1

Affiliation:

1. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Abstract

For optimal transfer of power to the surrounding medium, a sound source should have a radius of 1/6 to 1/4 of the sound wavelength. Sound-waves propagate from the source as compressions and rarefactions of the fluid medium, which decay by spreading and viscous losses. Higher frequencies are more easily refracted and reflected by objects in the environment, causing degradation of signal structure. In open air or water, the sound spreads spherically and decays by the inverse square law. If the sound is restricted to two dimensions rather than three, it decays as the inverse of range, whereas waves within a rod decay largely due to viscous losses; such calls are usually rather simple pulses and rely on the initial time of arrival because of multiple pathlengths or different propagation velocities in the environment. Because of the relationship between calling success and reproductive success, singing insects are under selective pressure to optimize the range, and to maintain the specificity, of their calls. Smaller insects have less muscle power; because of their small sound sources, higher frequencies will be radiated more efficiently than lower frequencies, but in order to produce brief loud pulses from a long-duration muscle contraction they may use both a frequency multiplier mechanism and a mechanical power amplifier. Airborne insect sounds in the range from 1 to 5 kHz tend to have sustained puretone components and a specific pattern of pulses which propagate accurately. Where the song frequency is higher, the pulses tend to become briefer, with a rapid initial build-up that gives a reliable time of onset through obstructed transmission pathways. These scale effects may be related both to the sound-producing mechanism and the auditory system of the receiver. Tiny insects have the special acoustic problem of communicating with only a small amount of available power. Some, such as fruit flies, communicate at low frequencies, at close range, by generating air currents; these currents may also be used to waft specific pheromones. Other small insects, such as Hemiptera, beetles, etc., communicate using substrate vibration. This enables long-range communication, but signal structure degrades with distance from the source; vibration signals tend to be confined to certain types of linear substrate, such as vegetation.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference66 articles.

1. The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera). 1. The tegminal generator;Bailey W. J.;J. Exp. Biol.,1970

2. The mechanism and e¤ciency of sound production in mole crickets;Bennet-Clark H. C.;J. Exp. Biol.,1970

3. Bennet-Clark H. C. 1971 Acoustics of insect song. Nature 234 255^259.

4. The energetics of the jump of the locust Schistocerca gregaria;Bennet-Clark H. C.;J. Exp. Biol.,1975

5. Bennet-Clark H. C. 1989 Songs and the physics of sound production. In Cricket behavior and neurobiology (ed. F. Huber T. E. Moore & W. Loher) pp. 227^261. Ithaca: Cornell University Press.

Cited by 215 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3