Chemical communication is not sufficient to explain reproductive inhibition in the bumblebee Bombus impatiens

Author:

Padilla Mario1,Amsalem Etya1,Altman Naomi2,Hefetz Abraham3,Grozinger Christina M.1ORCID

Affiliation:

1. Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA

2. Department of Statistics, Huck Institutes of Life Sciences, Clinical and Translational Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA

3. Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

Reproductive division of labour is a hallmark of eusociality, but disentangling the underlying proximate mechanisms can be challenging. In bumblebees, workers isolated from the queen can activate their ovaries and lay haploid, male eggs. We investigated if volatile, contact, visual or behavioural cues produced by the queen or brood mediate reproductive dominance in Bombus impatiens. Exposure to queen-produced volatiles, brood-produced volatiles and direct contact with pupae did not reduce worker ovary activation; only direct contact with the queen could reduce ovary activation. We evaluated behaviour, physiology and gene expression patterns in workers that were reared in chambers with all stages of brood and a free queen, caged queen (where workers could contact the queen, but the queen was unable to initiate interactions) or no queen. Workers housed with a caged queen or no queen fully activated their ovaries, whereas ovary activation in workers housed with a free queen was completely inhibited. The caged queen marginally reduced worker aggression and expression of an aggression-associated gene relative to queenless workers. Thus, queen-initiated behavioural interactions appear necessary to establish reproductive dominance. Queen-produced chemical cues may function secondarily in a context-specific manner to augment behavioural cues, as reliable or honest signal.

Funder

Bunton-Waller Graduate Award from Penn State University

United States–Israel Binational Science Foundation

Vaadia–BARD Postdoctoral Fellowship

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3