Supplementation in vitamin B3 counteracts the negative effects of tryptophan deficiencies in bumble bees

Author:

Tissier M L1,Kraus S2,Gómez-Moracho T2,Lihoreau M2

Affiliation:

1. Bishop’s University Biological Sciences, , 2600 Rue College, Québec J1M 1Z7, Canada

2. University Paul Sabatier Research Center on Animal Cognition, Center for Integrative Biology; CNRS, , 31062 Toulouse, France

Abstract

Abstract Increasing evidence highlights the importance of diet content in nine essential amino acids for bee physiological and behavioural performance. However, the 10th essential amino acid, tryptophan, has been overlooked as its experimental measurement requires a specific hydrolysis. Tryptophan is the precursor of serotonin and vitamin B3, which together modulate cognitive and metabolic functions in most animals. Here, we investigated how tryptophan deficiencies influence the behaviour and survival of bumble bees (Bombus terrestris). Tryptophan-deficient diets led to a moderate increase in food intake, aggressiveness and mortality compared with the control diet. Vitamin B3 supplementation in tryptophan-deficient diets tended to buffer these effects by significantly improving survival and reducing aggressiveness. Considering that the pollens of major crops and common plants, such as corn and dandelion, are deficient in tryptophan, these effects could have a strong impact on bumble bee populations and their pollination service. Our results suggest planting tryptophan and B3 rich species next to tryptophan-deficient crops could support wild bee populations.

Funder

European Commission

European Regional Development Found FEDER

CIFRE PhD fellowship from the Association Nationale de la Recherche et de la Technologie

CNRS

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pollen nutrition structures bee and plant community interactions;Proceedings of the National Academy of Sciences;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3