Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis

Author:

Huang Liang1,Ni Xuan2,Ditto William L.3,Spano Mark4,Carney Paul R.5,Lai Ying-Cheng26ORCID

Affiliation:

1. School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China

2. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

3. College of Sciences, North Carolina State University, Raleigh, NC 27695, USA

4. School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA

5. Pediatric Neurology and Epilepsy, Department of Neurology, University of North Carolina, 170 Manning Drive, Chapel Hill, NC 27599-7025, USA

6. Department of Physics, Arizona State University, Tempe, AZ 85287, USA

Abstract

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.

Funder

Army Research Office

The National Institutes of Biomedical Imaging and Bioengineering (NIBIB) through Collaborative Research in Computational Neuroscience

Office of Naval Research

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3