Time variability and periodicities of cross‐regional hydroclimatic causation in the contiguous United States

Author:

Yang Xueli1,Wang Zhi‐Hua1ORCID,Li Qi2ORCID,Lai Ying‐Cheng34

Affiliation:

1. School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona USA

2. School of Civil and Environmental Engineering Cornell University Ithaca New York USA

3. School of Electricity, Computer and Energy Engineering Arizona State University Tempe Arizona USA

4. Department of Physics Arizona State University Tempe Arizona USA

Abstract

AbstractIdentifying and understanding various causal relations are fundamental to climate dynamics for improving the predictive capacity of Earth system modeling. In particular, causality in Earth systems has manifest temporal periodicities, like physical climate variabilities. To unravel the characteristic frequency of causality in climate dynamics, we develop a data‐analytic framework based on a combination of causality detection and Hilbert spectral analysis, using a long‐term temperature and precipitation dataset in the contiguous United States. Using the Huang–Hilbert transform, we identify the intrinsic frequencies of cross‐regional causality for precipitation and temperature, ranging from interannual to interdecadal time scales. In addition, we analyze the spectra of the physical climate variabilities, including El Niño‐Southern Oscillation and Pacific Decadal Oscillation. It is found that the intrinsic causal frequencies are positively associated with the physics of the oscillations in the global climate system. The proposed methodology provides fresh insights into the causal connectivity in Earth's hydroclimatic system and its underlying mechanism as regulated by the characteristic low‐frequency variability associated with various climatic dynamics.

Funder

Office of Naval Research

National Science Foundation of Sri Lanka

National Aeronautics and Space Administration

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3