RNA binding protein AUF1/HNRNPD regulates nuclear export, stability and translation of SNCA transcripts

Author:

Kattan Fedon-Giasin12ORCID,Koukouraki Pelagia1,Anagnostopoulos Athanasios K.1ORCID,Tsangaris George T.1,Doxakis Epaminondas1ORCID

Affiliation:

1. Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens 11527, Greece

2. Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece

Abstract

Alpha-synuclein (SNCA) accumulation plays a central role in the pathogenesis of Parkinson's disease. Determining and interfering with the mechanisms that control SNCA expression is one approach to limiting disease progression. Currently, most of our understanding of SNCA regulation is protein-based. Post-transcriptional mechanisms directly regulating SNCA mRNA expression via its 3′ untranslated region (3′UTR) were investigated here. Mass spectrometry of proteins pulled down from murine brain lysates using a biotinylated SNCA 3′UTR revealed multiple RNA-binding proteins, of which HNRNPD/AUF1 was chosen for further analysis. AUF1 bound both proximal and distal regions of the SNCA 3′UTR, but not the 5′UTR or CDS. In the nucleus, AUF1 attenuated SNCA pre-mRNA maturation and was indispensable for the export of SNCA transcripts. AUF1 destabilized SNCA transcripts in the cytosol, primarily those with shorter 3′UTRs, independently of microRNAs by recruiting the CNOT1-CNOT7 deadenylase complex to trim the polyA tail. Furthermore, AUF1 inhibited SNCA mRNA binding to ribosomes. These data identify AUF1 as a multi-tasking protein regulating maturation, nucleocytoplasmic shuttling, stability and translation of SNCA transcripts.

Funder

Empirikion Foundation

Greek General Secretariat

Greek State Scholarships Foundation

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3