Proteolytic activity of the proteasome is required for female insect reproduction

Author:

Wang Wei1,Yang Rui-Rui1,Peng Lu-Yao1,Zhang Lu1,Yao Yue-Lin12,Bao Yan-Yuan1ORCID

Affiliation:

1. State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China

2. School of Biological Science, University of Edinburgh, Edinburgh EH8 9AB, UK

Abstract

Non-ATPase regulatory subunits (Rpns) are components of the 26S proteasome involved in polyubiquitinated substrate recognition and deubiquitination in eukaryotes. Here, we identified 15 homologues sequences of Rpn and associated genes by searching the genome and transcriptome databases of the brown planthopper, Nilaparvata lugens , a hemipteran rice pest. Temporospatial analysis showed that NlRpn genes were significantly highly expressed in eggs and ovaries but were less-highly expressed in males. RNA interference-mediated depletion of NlRpn genes decreased the proteolytic activity of proteasome and impeded the transcription of lipase and vitellogenin genes in the fat bodies and ovaries in adult females, and reduced the triglyceride content in the ovaries. Decrease of the proteolytic activity of the proteasome via knockdown of NlRpn s also inhibited the transcription of halloween genes, including NlCYP307A2 , NlCYP306A2 and NlCYP314A1 , in the 20-hydroxyecdysone (20E) biosynthetic pathway in the ovaries, reduced 20E production in adult females, and impaired ovarian development and oocyte maturation, resulting in reduced fecundity. These novel findings indicate that the proteolytic activity of the proteasome is required for female reproductive processes in N. lugens , thus furthering our understanding of the reproductive and developmental strategies in insects.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3