Diallyl Trisulfide Causes Male Infertility with Oligoasthenoteratospermia in Sitotroga cerealella through the Ubiquitin–Proteasome Pathway

Author:

Shah Sakhawat1ORCID,Elgizawy Karam Khamis2ORCID,Wu Meng-Ya1,Yao Hucheng3,Yan Wen-Han1,Li Yu1,Wang Xiao-Ping1ORCID,Wu Gang1ORCID,Yang Feng-Lian1ORCID

Affiliation:

1. Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt

3. College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces male infertility and leads to apyrene and eupyrene sperm dysfunction in Sitotroga cerealella. In this study, we conducted an analysis of testis-specific RNA-Seq data and identified 449 downregulated genes and 60 upregulated genes in the DAT group compared to the control group. The downregulated genes were significantly enriched in the ubiquitin–proteasome pathway. Furthermore, DAT caused a significant reduction in mRNA expression of proteasome regulatory subunit particles required for ATP-dependent degradation of ubiquitinated proteins as well as decreased the expression profile of proteasome core particles, including β1, β2, and β5. Sperm physiological analysis showed that DAT decreased the chymotrypsin-like activity of the 20S proteasome and formed aggresomes in spermatozoa. Overall, our findings suggest that DAT impairs the testis proteasome, ultimately causing male infertility characterized by oligoasthenoteratospermia due to disruption in sperm proteasome assembly in S. cerealella.

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3