Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut

Author:

Hemsworth Glyn R.1ORCID,Thompson Andrew J.1,Stepper Judith1,Sobala Łukasz F.1,Coyle Travis2,Larsbrink Johan34,Spadiut Oliver35,Goddard-Borger Ethan D.6,Stubbs Keith A.2,Brumer Harry34,Davies Gideon J.1

Affiliation:

1. Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK

2. School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia

3. Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden

4. Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4

5. Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Teknikringen 56–58, 100 44 Stockholm, Sweden

6. The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville Victoria 3052, Australia

Abstract

The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α- l -arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins.

Funder

Vetenskapsrådet

Natural Sciences and Engineering Research Council of Canada

Knut och Alice Wallenbergs Stiftelse

European Research Council

University of Western Australia

Canada Foundation for Innovation

Biotechnology and Biological Sciences Research Council

Svenska Forskningsrådet Formas

Canadian Institutes of Health Research

University of British Columbia

Mizutani Foundation for Glycoscience

Australian Research Council

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3