Cilia oscillations

Author:

Man Yi1,Ling Feng1ORCID,Kanso Eva1ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA

Abstract

Cilia, or eukaryotic flagella, are microscopic active filaments expressed on the surface of many eukaryotic cells, from single-celled protozoa to mammalian epithelial surfaces. Cilia are characterized by a highly conserved and intricate internal structure in which molecular motors exert forces on microtubule doublets causing cilia oscillations. The spatial and temporal regulations of this molecular machinery are not well understood. Several theories suggest that geometric feedback control from cilium deformations to molecular activity is needed. Here, we implement a recent sliding control model, where the unbinding of molecular motors is dictated by the sliding motion between microtubule doublets. We investigate the waveforms exhibited by the model cilium, as well as the associated molecular motor dynamics, for hinged and clamped boundary conditions. Hinged filaments exhibit base-to-tip oscillations while clamped filaments exhibit both base-to-tip and tip-to-base oscillations. We report the change in oscillation frequencies and amplitudes as a function of motor activity and sperm number, and we discuss the validity of these results in the context of experimental observations of cilia behaviour. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.

Funder

Army Office of Research

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3