Predicting microscale beat patterns from nanoscale chemomechanics in eukaryotic flagella

Author:

Cass James F.ORCID,Bloomfield-Gadêlha HermesORCID

Abstract

We present quantitative predictions for experimental observables—amplitude, frequency and wavelength—of the eukaryotic flagellar beat in terms of underlying molecular chemomechanical parameters. Flagellar beating, an incompletely understood self-organized process arising from the collective action of dynein molecular motors, is modelled as a reaction-diffusion (RD) system with an oscillatory instability arising from motor-induced microtubule sliding. While the RD model accurately reproduces beating patterns of bull spermatozoa andC. Reinhardtii, existing linear analyses and simulations are unable to provide a complete framework for understanding nonlinear waveform formation. Here, we derive analytical expressions that reveal the nonlinear dependence of beat characteristics on parameters such as motor binding duty ratio, stepping velocity, and axonemal resistance. Our analysis uncovers a novel out-of-equilibrium mechanism for base-to-tip wave propagation, involving an interference pattern between unstable standing wave modes that generates travelling waves. Predicted beat patterns agree remarkably with numerical simulations, even far from the critical point marking the onset of oscillations. This unveils key molecular parameters that govern oscillation initiation, amplitude saturation, frequency shifts, and the spatial phase gradient crucial for generating propulsive hydrodynamic force. Our results yield biophysical understanding of how molecular interactions shape flagellar beating patterns, allowing for the inference of molecular properties from macroscopic observations. This challenges existing hypotheses on wave generation and demonstrates the power of nonlinear analysis to uncover new phenomena beyond the reach of linear models and computational studies alone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3