Critical transitions in malaria transmission models are consistently generated by superinfection

Author:

Alonso David1ORCID,Dobson Andy23ORCID,Pascual Mercedes34ORCID

Affiliation:

1. Theoretical and Computational Ecology, Center for Advanced Studies (CEAB-CSIC), Blanes, Spain

2. Ecology and Evolutionary Biology, Eno Hall, Princeton University, NJ 08540, USA

3. Santa Fe Institute, Hyde Park Road, Santa Fe, NM, USA

4. Ecology and Evolutionary Biology, University of Chicago, Chicago, IL, USA

Abstract

The history of modelling vector-borne infections essentially begins with the papers by Ross on malaria. His models assume that the dynamics of malaria can most simply be characterized by two equations that describe the prevalence of malaria in the human and mosquito hosts. This structure has formed the central core of models for malaria and most other vector-borne diseases for the past century, with additions acknowledging important aetiological details. We partially add to this tradition by describing a malaria model that provides for vital dynamics in the vector and the possibility of super-infection in the human host: reinfection of asymptomatic hosts before they have cleared a prior infection. These key features of malaria aetiology create the potential for break points in the prevalence of infected hosts, sudden transitions that seem to characterize malaria’s response to control in different locations. We show that this potential for critical transitions is a general and underappreciated feature of any model for vector-borne diseases with incomplete immunity, including the canonical Ross–McDonald model. Ignoring these details of the host’s immune response to infection can potentially lead to serious misunderstanding in the interpretation of malaria distribution patterns and the design of control schemes for other vector-borne diseases. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3