Interplay of self-association and conformational flexibility in regulating protein function

Author:

Garton Michael1,MacKinnon Stephen S.2,Malevanets Anatoly3,Wodak Shoshana J.4ORCID

Affiliation:

1. Department of Molecular Genetics, University of Toronto, The Donnelly Centre, 160 College Street, Toronto, Ontario M5S 3E1, Canada

2. Cyclica Inc., 18 King Street East, Suite 810, Toronto, Ontario M5C 1C4, Canada

3. Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada

4. VIB Structural Biology research Centre, VUB, Building E Pleinlaan 2, 1050 Brussels, Belgium

Abstract

Many functional roles have been attributed to homodimers, the most common mode of protein self-association, notably in the regulation of enzymes, ion channels, transporters and transcription factors. Here we review findings that offer new insights into the different roles conformational flexibility plays in regulating homodimer function. Intertwined homodimers of two-domain proteins and their related family members display significant conformational flexibility, which translates into concerted motion between structural domains. This flexibility enables the corresponding proteins to regulate function across family members by modulating the spatial positions of key recognition surfaces of individual domains, to either maintain subunit interfaces, alter them or break them altogether, leading to a variety of functional consequences. Many proteins may exist as monomers but carry out their biological function as homodimers or higher-order oligomers. We present early evidence that in such systems homodimer formation primes the protein for its functional role. It does so by inducing elevated mobility in protein regions corresponding to the binding epitopes of functionally important ligands. In some systems this process acts as an allosteric response elicited by the self-association reaction itself. Our analysis furthermore suggests that the induced extra mobility likely facilitates ligand binding through the mechanism of conformational selection. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.

Funder

SickKids Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3