Abstract
In the study of cultural evolution, observed among-group affinity patterns reflect the effects of processes such as mutation (e.g. innovation and copying error), between-group interaction (culture flow), drift and selection. As in biology, cultural affinity patterns are often spatially correlated, making it difficult to distinguish between the opposing geographically mediated forces of divergence and interaction, which cause groups to become more distinct or similar over time, respectively. Analogous difficulties are faced by evolutionary biologists examining the relationship between biological affinity and geography, particularly at lower taxonomic levels where the potential for gene flow between lineages is greatest. Tree models are generally used to assess the fit between affinity patterns and models of historical divergence. However, factors driving lineage divergence are often spatially mediated, resulting in tree models that are themselves geographically structured. Here, we showcase a simple method drawn from evolutionary ecology for assessing the relative impact of both geographically mediated processes simultaneously. We illustrate the method using global human craniometric diversity and material culture from the northern coast of New Guinea as example case studies. This method can be employed to quantify the relative importance of history (divergence) and geographically mediated between-group interaction (culture flow) in explaining observed cultural affinity patterns.
This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献