Affiliation:
1. Department of Animal and Plant Sciences, University of SheffieldSheffield S10 2TN, UK
2. Division of Biological Sciences, University of CaliforniaSan Diego, La Jolla, CA 92093-0116, USA
Abstract
Variation in traits across species or populations is the outcome of both environmental and historical factors. Trait variation is therefore a function of both the phylogenetic and spatial context of species. Here we introduce a method that, within a single framework, estimates the relative roles of spatial and phylogenetic variations in comparative data. The approach requires traits measured across phylogenetic units, e.g. species, the spatial occurrences of those units and a phylogeny connecting them. The method modifies the expected variance of phylogenetically independent contrasts to include both spatial and phylogenetic effects. We illustrate this approach by analysing cross-species variation in body mass, geographical range size and species-typical environmental temperature in three orders of mammals (carnivores, artiodactyls and primates). These species attributes contain highly disparate levels of phylogenetic and spatial signals, with the strongest phylogenetic autocorrelation in body size and spatial dependence in environmental temperatures and geographical range size showing mixed effects. The proposed method successfully captures these differences and in its simplest form estimates a single parameter that quantifies the relative effects of space and phylogeny. We discuss how the method may be extended to explore a range of models of evolution and spatial dependence.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
173 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献